Search results for "light sheet fluorescence microscopy"
showing 10 items of 22 documents
Flexible multi-beam light-sheet fluorescence microscope for live imaging without striping artifacts
2018
The development of light-sheet fluorescence microscopy (LSFM) has greatly expanded the experimental capabilities in many biological and biomedical research fields, enabling for example live studies of murine and zebrafish neural activity or of cell growth and division. The key feature of the method is the selective illumination of a sample single plane, providing an intrinsic optical sectioning and allowing direct 2D image recording. On the other hand, this excitation scheme is more affected by absorption or scattering artifacts in comparison to point scanning methods, leading to un-even illumination. We present here an easily implementable method, based on acousto-optical deflectors (AOD),…
4D (x-y-z-t) imaging of thick biological samples by means of Two-Photon inverted Selective Plane Illumination Microscopy (2PE-iSPIM)
2015
AbstractIn the last decade light sheet fluorescence microscopy techniques, such as selective plane illumination microscopy (SPIM), has become a well established method for developmental biology. However, conventional SPIM architectures hardly permit imaging of certain tissues since the common sample mounting procedure, based on gel embedding, could interfere with the sample morphology. In this work we propose an inverted selective plane microscopy system (iSPIM), based on non-linear excitation, suitable for 3D tissue imaging. First, the iSPIM architecture provides flexibility on the sample mounting, getting rid of the gel-based mounting typical of conventional SPIM, permitting 3D imaging of…
A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue
2016
AbstractFor 3-dimensional (3D) imaging of a tissue, 3 methodological steps are essential and their successful application depends on specific characteristics of the type of tissue. The steps are 1° clearing of the opaque tissue to render it transparent for microscopy, 2° fluorescence labeling of the tissues and 3° 3D imaging. In the past decades, new methodologies were introduced for the clearing steps with their specific advantages and disadvantages. Most clearing techniques have been applied to the central nervous system and other organs that contain relatively low amounts of connective tissue including extracellular matrix. However, tissues that contain large amounts of extracellular mat…
Fast Inertia-Free Volumetric Light-Sheet Microscope
2017
Fast noninvasive three-dimensional (3D) imag-ing is crucial for quantitatively studying highly dynamic events ranging from flow cytometry to developmental biology. Light-sheet microscopy has emerged as the tool-of-choice for 3D characterization of rapidly evolving systems. However, to obtain a 3D image, either the sample or parts of the microscope are moved, limiting the acquisition speed. Here, we propose a novel inertia-free light-sheet-based scheme for volumetric imaging at high temporal resolution. Our approach comprises a novel combination of an acousto-optic scanner to produce tailored illumination and an acoustic-optofluidic lens, placed in the detection path to provide extended dept…
Swift light sheet volumetric charting of large human brain portions
2020
Using a custom light sheet fluorescence microscope, we image large stained human brain portions, labelled for NeuN and GAD67 neuronal markers, discerning the inhibitory population via neural-network based image analysis and exposing the brain connectivity.
Advanced fluorescence microscopy for in vivo imaging of neuronal activity
2019
Brain function emerges from the coordinated activity, over time, of large neuronal populations placed in different brain regions. Understanding the relationships of these specific areas and disentangling the contributions of individual neurons to overall function remain central goals for neuroscience. In this scenario, fluorescence microscopy has been proved as the tool of choice for in vivo recording of brain activity. Optical advances combined with genetically encoded indicators allow a large flexibility in terms of spatiotemporal resolution and field of view while keeping invasiveness in living animals to a minimum. Here we describe the latest advancements in the field of linear and nonl…
Optical sectioning by two-pinhole confocal fluorescence microscopy.
2003
A two-pinhole axially superresolving confocal fluorescence imaging system is presented. Based on the concept of subtractive incoherent imaging, the system described here is equipped with a zero-focus complex-transmittance pupil filter in one of the collector paths. The optical sectioning capacity of the system is 25% superior to that of a free-pupil one-pinhole instrument.
Optical-sectioning improvement in two-color excitation scanning microscopy
2004
We present a new beam-shaping technique for two-color excitation fluorescence microscopy. We show that by simply inserting a properly designed shaded-ring filter in the illumination beam of smaller wavelength, it is possible to improve the effective optical sectioning capacity of such microscopes by 23%. Such an improvement is obtained at the expense of only a very small increasing of the overall energy in the point-spread-function sidelobes. The performance of this technique is illustrated by a numerical imaging simulation.
Dual-beam confocal light-sheet microscopy via flexible acousto-optic deflector
2019
Confocal detection in digital scanned laser light-sheet fluorescence microscopy (DSLM) has been established as a gold standard method to improve image quality. The selective line detection of a complementary metal-oxide-semiconductor camera (CMOS) working in rolling shutter mode allows the rejection of out-of-focus and scattered light, thus reducing background signal during image formation. Most modern CMOS have two rolling shutters, but usually only a single illuminating beam is used, halving the maximum obtainable frame rate. We report on the capability to recover the full image acquisition rate via dual confocal DSLM by using an acoustooptic deflector. Such a simple solution enables us t…
Spatial calibration of structured illumination fluorescence microscopy using capillary tissue phantoms.
2008
Quantitative assessment of microvascular structure is relevant to the investigations of ischemic injury, reparative angiogenesis and tumor revascularization. In light microscopy applications, thick tissue specimens are necessary to characterize microvascular networks; however, thick tissue leads to image distortions due to out-of-focus light. Structured illumination confocal microscopy is an optical sectioning technique that improves contrast and resolution by using a grid pattern to identify the plane-of-focus within the specimen. Because structured illumination can be applied to wide-field (nonscanning) microscopes, the microcirculation can be studied by sequential intravital and confocal…